Rembrandttoren, Amsterdam FSE-studie
- 135 m hoog, 35 bouwlagen w.v. 20 kantoor, 52.000 m2, w.v. 30.000 m2 kantoor
- start bouw: november 1991 (start staalconstructie: september 1993), oplevering: juni 1995
- FSE – systeembenadering met natuurlijke brand
In de jaren ’90 was de Rembrandttoren het eerste gebouw met een staalskelet dat in Nederland de 100 m-grens passeerde. Aanleiding voor staalskeletbouw waren de korte bouwtijd, het geringe constructiegewicht en de beperkte constructiehoogte.
Constructie
Het staalskelet bestaat uit verdiepinghoge kolommen in de gevelzone (HE- en HD-profielen) en liggers (HE 280AA) met staalplaat-betonvloeren. Op de kantoorverdiepingen overspannen de liggers 9 m van kern tot gevel. De kern is van gestort beton.
Brandveiligheid
Uitgangspunten
Voor gebouwen boven 70 m gaf (en geeft) het Bouwbesluit geen prestatie-eisen. Bovendien ontbraken richtlijnen als ‘Brandveiligheid in hoge gebouwen’ (SBR, 2005). =. Om bezwijken van de toren te voorkomen, werd 120 minuten brandwerendheid geëist voor de hoofddraagconstructie en 60 minuten voor de vloeren, in combinatie met onder meer sprinklers, brandmelding (volledige detectie door rookmelders), brandslaghaspels, blussysteem voor brandweer, brandweerliften en noodverlichting. De kolommen en liggers zijn bekleed met 20 mm brandwerende plaat. In de cannalures van de vloeren is om de 0,6 m een wapeningsstaaf gelegd.
Aanpak
Als onderdeel van zijn afstudeeronderzoek ‘Brandveilig ontwerpen van hoogbouwconstructies’ aan de TU Delft in 2001, ontwikkelde Pascal Steenbakkers een alternatieve aanpak van de brandveiligheid, volgens het natuurlijk-brandconcept.
Met het computerprogramma DIANA is een FE-model van het constructiesysteem ontwikkeld. Hierin is een volledig ontwikkelde, natuurlijke brand in een representatief brandcompartiment gesimuleerd. Als brandcompartiment is de 21ste verdiepingsvloer van de Rembranddtoren gemodelleerd: een ononderbroken kantoorruimte van 32,4x32,4 m, exclusief kern en inclusief gevelkolommen. Juist op deze verdieping zouden de kolommen het meest onder brand te lijden hebben.
De brandontwikkeling is gemodelleerd in het programma Ozone. De resultaten hiervan vormden de input voor het FE-model.
Resultaten
Uit de berekeningen blijkt dat de vloeren en liggers de vereiste 120 minuten brandwerendheid óók halen zonder aanvullende brandwerende bescherming. Dat brengt een kostenbesparing van naar schatting 540.000 Euro met zich (prijspeil 2001). Het beschermen van de gevelkolommen (via 20 mm Promatect) blijft echter nodig.
Ook is aangetoond dat bij brand – als gevolg van de herverdeling van belastingen – extra hoge spanningen ontstaan in het betondek van de vloerdelen bij de hoekkolommen. Om bezwijken, maar ook afspatten van beton te voorkomen, zijn hier extra voorzieningen noodzakelijk, bijvoorbeeld door ter plaatse van de aansluitingen extra wapening in cannelures van de vloer aan te brengen . Bij een analyse op componentenniveau zou dit nooit boven water zijn gekomen.
|